ДСТУ EN 60099-4:2016 Разрядники. Часть 4. Металоксидные разрядники без искровых промежутков для защиты от перенапряжений систем переменного тока (EN 60099-4:2014, IDT)

Данный документ доступнен в тарифе «ВСЕ ВКЛЮЧЕНО»

У Вас есть вопросы по документу? Мы рады на них ответить!Перечень бесплатных документовОбнаружили ошибку в документе или на сайте? Пожалуйста, напишите нам об этом!Оставить заявку на документ

ПІДТВЕРДЖУВАЛЬНЕ ПОВІДОМЛЕННЯ

Державне підприємство «Український науково-дослідний і навчальний центр
проблем стандартизації, сертифікації та якості»
(З питань придбання офіційного видання звертайтесь до національного органу стандартизації
(ДП «УкрНДНЦ»))

Наказ від 22.08.2016 № 244

EN 60099-4:2014

Surge arresters — Part 4: Metal-oxide surge arresters without gaps for a.c. systems

прийнято як національний стандарт
методом «підтвердження» за позначенням
Відповідає офіційному тексту

ДCТУ EN 60099-4:2016 (EN 60099-4:2014, IDТ)

Розрядники. Частина 4. Металоксидні розрядники без іскрових проміжків для захисту від перенапруг систем змінного струму

З наданням чинності від 2016-09-01

CONTENTS

Introduction

1 Scope

2 Normative references

3 Terms and definitions

4 Identification and classification

4.1 Arrester identification

4.2 Arrester classification

5 Standard ratings and service conditions

5.1 Standard rated voltages

5.2 Standard rated frequencies

5.3 Standard nominal discharge currents

5.4 Service conditions

5.4.1 Normal service conditions

5.4.2 Abnormal service conditions

6 Requirements

6.1 Insulation withstand

6.2 Reference voltage

6.3 Residual voltages

6.4 Internal partial discharges

6.5 Seal leak rate

6.6 Current distribution in a multi-column arrester

6.7 Thermal stability

6.8 Long term stability under continuous operating voltage

6.9 Heat dissipation behaviour of test sample

6.10 Repetitive charge transfer withstand

6.11 Operating duty

6.12 Power-frequency voltage versus time characteristics of an arrester

6.13 Short-circuit performance

6.14 Disconnector

6.14.1 Disconnector withstand

6.14.2 Disconnector operation

6.15 Requirements on internal grading components

6.16 Mechanical loads

6.16.1 General

6.16.2 Bending moment

6.16.3 Resistance against environmental stresses

6.16.4 Insulating base and mounting bracket

6.16.5 Mean value of breaking load (MBL).

6.16.6 Electromagnetic compatibility .

6.17 End of life

6.18 Lightning impulse discharge capability

7 General testing procedure

7.1 Measuring equipment and accuracy

7.2 Reference voltage measurements

7.3 Test samples

7.3.1 General

7.3.2 Arrester section requirements

8 Type tests (design tests)

8.1 General

8.2 Insulation withstand tests

8.2.1 General

8.2.2 Tests on individual unit housings

8.2.3 Tests on complete arrester assemblies

8.2.4 Ambient air conditions during tests

8.2.5 Wet test procedure

8.2.6 Lightning impulse voltage test

8.2.7 Switching impulse voltage test

8.2.8 Power-frequency voltage test

8.3 Residual voltage tests

8.3.1 General

8.3.2 Steep current impulse residual voltage test

8.3.3 Lightning impulse residual voltage test

8.3.4 Switching impulse residual voltage test

8.4 Test to verify long term stability under continuous operating voltage

8.4.1 General

8.4.2 MO resistor elements stressed below Uref

8.4.3 Test procedure for MO resistor elements stressed at or above Uref

8.5 Test to verify the repetitive charge transfer rating, Qrs

8.5.1 General

8.5.2 Test procedure

8.5.3 Test evaluation

8.5.4 Rated values of repetitive charge transfer rating, Qrs

8.6 Heat dissipation behaviour of test sample

8.6.1 General

8.6.2 Arrester section requirements

8.6.3 Procedure to verify thermal equivalency between complete arrester and arrester section

8.7 Operating duty test

8.7.1 General

8.7.2 Test procedure

8.7.3 Rated thermal energy and charge values, Wth and Qth

8.8 Power-frequency voltage-versus-time test

8.8.1 General

8.8.2 Test samples

8.8.3 Initial measurements

8.8.4 Test procedure

8.8.5 Test evaluation

8.9 Tests of arrester disconnector

8.9.1 General

8.9.2 Operating withstand test

8.9.3 Disconnector operation

8.9.4 Mechanical tests

8.9.5 Temperature cycling and seal pumping test

8.10 Short-circuit tests

8.10.1 General

8.10.2 Preparation of the test samples

8.10.3 Mounting of the test sample

8.10.4 High-current short-circuit tests

8.10.5 Low-current short-circuit test

8.10.6 Evaluation of test results

8.11 Test of the bending moment

8.11.1 General

8.11.2 Overview

8.11.3 Sample preparation

8.11.4 Test procedure

8.11.5 Test evaluation

8.11.6 Test on insulating base and mounting bracket

8.12 Environmental tests

8.12.1 General

8.12.2 Sample preparation

8.12.3 Test procedure

8.12.4 Test evaluation

8.13 Seal leak rate test

8.13.1 General

8.13.2 Sample preparation

8.13.3 Test procedure

8.13.4 Test evaluation

8.14 Radio interference voltage (RIV) test

8.15 Test to verify the dielectric withstand of internal components

8.15.1 General

8.15.2 Test procedure

8.15.3 Test evaluation

8.16 Test of internal grading components

8.16.1 Test to verify long term stability under continuous operating voltage

8.16.2 Thermal cyclic test

9 Routine tests and acceptance tests

9.1 Routine tests

9.2 Acceptance tests

9.2.1 Standard acceptance tests

9.2.2 Special thermal stability test

10 Test requirements on polymer-housed surge arresters

10.1 Scope

10.2 Normative references

10.3 Terms and definitions

10.4 Identification and classification

10.5 Standard ratings and service conditions

10.6 Requirements

10.7 General testing procedure

10.8 Type tests (design tests)

10.8.1 General

10.8.2 Insulation withstand tests

10.8.3 Residual voltage tests

10.8.4 Test to verify long term stability under continuous operating voltage

10.8.5 Test to verify the repetitive charge transfer rating, Qrs

10.8.6 Heat dissipation behaviour of test sample

10.8.7 Operating duty tests

10.8.8 Power frequency voltage-versus-time test

10.8.9 Tests of arrester disconnector

10.8.10 Short-circuit tests

10.8.11 Test of the bending moment

10.8.12 Environmental tests

10.8.13 Seal leak rate test

10.8.14 Radio interference voltage (RIV) test

10.8.15 Test to verify the dielectric withstand of internal components

10.8.16 Test of internal grading components

10.8.17 Weather ageing test

10.9 Routine tests

11 Test requirements on gas-insulated metal enclosed arresters (GIS-arresters)

11.1 Scope

11.2 Normative references

11.3 Terms and definitions

11.4 Identification and classification

11.5 Standard ratings and service conditions

11.6 Requirements

11.6.1 Withstand voltages

11.7 General testing procedures

11.8 Type tests (design tests)

11.8.1 General

11.8.2 Insulation withstand tests

11.8.3 Residual voltage tests

11.8.4 Test to verify long term stability under continuous operating voltage

11.8.5 Test to verify the repetitive charge transfer rating, Qrs

11.8.6 Heat dissipation behaviour of test sample

11.8.7 Operating duty tests

11.8.8 Power frequency voltage-versus-time test

11.8.9 Tests of arrester disconnector

11.8.10 Short-circuit tests

11.8.11 Test of the bending moment

11.8.12 Environmental tests

11.8.13 Seal leak rate test

11.8.14 Radio interference voltage (RIV) test

11.8.15 Test to verify the dielectric withstand of internal components

11.8.16 Test of internal grading components

11.9 Routine tests

11.10 Test after erection on site

12 Separable and dead-front arresters

12.1 Scope

12.2 Normative references

12.3 Terms and definitions

12.4 Identification and classification

12.5 Standard ratings and service conditions

12.6 Requirements

12.7 General testing procedure

12.8 Type tests (design tests)

12.8.1 General

12.8.2 Insulation withstand tests

12.8.3 Residual voltage tests

12.8.4 Test to verify long term stability under continuous operating voltage

12.8.5 Test to verify the repetitive charge transfer rating, Qrs

12.8.6 Heat dissipation behaviour of test sample

12.8.7 Operating duty tests

12.8.8 Power-frequency voltage versus time test

12.8.9 Tests of disconnector

12.8.10 Short-circuit test

12.8.11 Test of the bending moment

12.8.12 Environmental tests

12.8.13 Seal leak rate test

12.8.14 Radio interference voltage (RIV) test

12.8.15 Test to verify the dielectric withstand of internal components

12.8.16 Test of internal grading components

12.8.17 Internal partial discharge test

12.9 Routine tests and acceptance tests

13 Liquid-immersed arresters

13.1 Scope

13.2 Normative references

13.3 Terms and definitions

13.4 Identification and classification

13.5 Standard ratings and service conditions

13.6 Requirements

13.7 General testing procedure

13.8 Type tests (design tests)

13.8.1 General

13.8.2 Insulation withstand tests

13.8.3 Residual voltage tests

13.8.4 Test to verify long term stability under continuous operating voltage

13.8.5 Test to verify the repetitive charge transfer rating, Qrs

13.8.6 Heat dissipation behaviour of test sample

13.8.7 Operating duty tests

13.8.8 Power frequency voltage-versus-time test

13.8.9 Tests of arrester disconnector

13.8.10 Short-circuit tests

13.8.11 Test of the bending moment

13.8.12 Environmental tests

13.8.13 Seal leak rate test

13.8.14 Radio interference voltage (RIV) test

13.8.15 Test to verify the dielectric withstand of internal components

13.8.16 Test of internal grading components

13.9 Routine tests and acceptance tests

Annex A (normative) Abnormal service conditions

Annex B (normative) Test to verify thermal equivalency between complete arrester and arrester section

Annex C (normative) Artificial pollution test with respect to the thermal stress on porcelain housed multi-unit metal-oxide surge arresters

C.1 Glossary

C.1.1 Measured quantities

C.1.2 Calculated quantities ..

C.2 General

C.3 Classification of site severity

C.4 Preliminary heating test: measurement of the thermal time constant τ and calculation of β

C.5 Verification of the need to perform the pollution tests

C.6 General requirements for the pollution test

C.6.1 Test sample

C.6.2 Testing plant

C.6.3 Measuring devices and measuring procedures

C.6.4 Test preparation

C.7 Test procedures

C.7.1 Slurry method

C.7.2 Salt fog method

C.8 Evaluation of test results

C.8.1 Calculation of Kie

C.8.2 Calculation of the expected temperature rise ∆Tz in service

C.8.3 Preparation for the operating duty test

C.9 Example

C.9.1 Preliminary heating test

C.9.2 Verification of the need to perform the pollution test

C.9.3 Salt fog tests

C.9.4 Calculation performed after five test cycles

C.9.5 Calculation performed after 10 test cycles

Annex D (informative) Typical information given with enquiries and tenders

D.1 Information given with enquiry

D.1.1 System data

D.1.2 Service conditions

D.1.3 Arrester duty

D.1.4 Characteristics of arrester

D.1.5 Additional equipment and fittings

D.1.6 Any special abnormal conditions

D.2 Information given with tender

Annex E (informative) Ageing test procedure – Arrhenius law – Problems with higher temperatures

Annex F (informative) Guide for the determination of the voltage distribution along metal-oxide surge arresters

F.1 General .

F.2 Modelling of the surge arrester

F.3 Modelling of the boundary conditions

F.4 Calculation procedure

F.4.1 Capacitive representation of the MO resistor column

F.4.2 Capacitive and resistive representation of the MO resistor column

F.4.3 Determination of Uct

F.5 Example calculations

F.5.1 Modelling of the arrester and the boundary conditions

F.5.2 Resistive effects of the metal-oxide MO resistors

F.5.3 Results and conclusions from electric field calculations

Annex G (normative) Mechanical considerations

G.1 Test of bending moment

G.2 Seismic test

G.3 Definition of mechanical loads

G.4 Definition of seal leak rate

G.5 Calculation of wind-bending-moment

G.6 Procedures of tests of bending moment for porcelain/cast resin and polymer-housed arresters

Annex H (normative) Test procedure to determine the lightning impulse discharge capability

H.1 General

H.2 Selection of test samples

H.3 Test procedure

H.4 Test parameters for the lightning impulse discharge capability test

H.5 Measurements during the lightning impulse discharge capability test

H.6 Rated lightning impulse discharge capability

H.7 List of rated energy values

H.8 List of rated charge values

Annex I (normative) Determination of the start temperature in tests including verification of thermal stability

Annex J (normative) Determination of the average temperature of a multi-unit high-voltage arrester

Annex K (informative) Example calculation of test parameters for the operating duty test (8.7) according to the requirements of 7.3

Annex L (informative) Comparison of the old energy classification system based on line discharge classes and the new classification system based on thermal energy ratings for operating duty tests and repetitive charge transfer ratings for repetitive single event energies

Bibliography

Figure 1 – Illustration of power losses versus time during long term stability test

Figure 2 – Test procedure to verify the repetitive charge transfer rating, Qrs

Figure 3 – Test procedure to verify the thermal energy rating, Wth, and the thermal charge transfer rating, Qth, respectively

Figure 4 – Test procedure to verify the power frequency versus time characteristic (TOV test)

Figure 5 – Examples of arrester units

Figure 6 – Examples of fuse wire locations for “Design A“ arresters

Figure 7 – Examples of fuse wire locations for “Design B“ arresters

Figure 8 – Short-circuit test setup for porcelain-housed arresters

Figure 9 – Short-circuit test setup for polymer-housed arresters

Figure 10 – Example of a test circuit for re-applying pre-failing circuit immediately before applying the short-circuit test current

Figure 11 – Thermomechanical test

Figure 12 – Example of the test arrangement for the thermomechanical test and direction of the cantilever load

Figure 13 – Water immersion

Figure 14 – Test set-up for insulation withstand test of unscreened separable arresters

Figure C.1 – Flow-chart showing the procedure for determining the preheating of a test sample

Figure F.1 – Typical three-phase arrester installation

Figure F.2 – Simplified multi-stage equivalent circuit of an arrester

Figure F.3 – Geometry of arrester model

Figure F.4 – Example of voltage-current characteristic of MO resistors at +20 °C in the leakage current region

Figure F.5 – Calculated voltage stress along the MO resistor column in case B

Figure G.1 – Bending moment – multi-unit surge arrester

Figure G.2 – Definition of mechanical loads

Figure G.3 – Surge arrester unit

Figure G.4 – Surge-arrester dimensions

Figure G.5 – Flow chart of bending moment test procedures

Figure J.1 – Determination of average temperature in case of arrester units of same rated voltages

Figure J.2 – Determination of average temperature in case of arrester units of different rated voltages

Figure L.1 – Specific energy in kJ per kV rating dependant on the ratio of switching impulse residual voltage (Ua) to the r.m.s. value of the rated voltage Ur of the arrester

Table 1 – Arrester classification

Table 2 – Preferred values of rated voltages

Table 3 – Arrester type tests

Table 4 – Requirements for high current impulses

Table 5 – Rated values of thermal charge transfer rating, Qth

Table 6 – Test requirements for porcelain housed arresters

Table 7 – Required currents for short-circuit tests

Table 8 – Test requirements for polymer-housed arresters

Table 9 – 10 kA and 20 kA three–phase GIS–arresters – Required withstand voltages

Table 10 – 2,5 kA and 5 kA three – phase – GIS arresters – Required withstand voltages

Table 11 – Insulation withstand test voltages for unscreened separable arresters

Table 12 – Insulation withstand test voltages for dead-front arresters or separable

arresters in a screened/shielded housing

Table 13 – Partial discharge test values for separable and dead-front arresters

Table C.1 – Mean external charge for different pollution severities

Table C.2 – Characteristic of the sample used for the pollution test

Table C.3 – Requirements for the device used for the measurement of the charge

Table C.4 – Requirements for the device used for the measurement of the temperature

Table C.5 – Calculated values of ∆Tz max for the selected example

Table C.6 – Results of the salt fog test for the selected example

Table C.7 – Calculated values of ∆Tz and of TOD after 5 cycles for the selected example

Table C.8 – Calculated values of ∆Tz and of TOD after 10 cycles for the selected example

Table E.1 – Minimum demonstrated lifetime prediction

Table E.2 – Relationship between test durations at 115 °C and equivalent time at upper limit of ambient temperature

Table F.1 – Results from example calculations

Table L.1 – Peak currents for switching impulse residual voltage test

Table L.2 – Parameters for the line discharge test on 20 000 A and 10 000 A arresters

Table L.3 – Comparison of the classification system according to IEC 60099-4:2009 (Ed.2.2) and to IEC 60099-4:2014 (Ed.3.0)

Полная версия документа доступна в тарифе «ВСЕ ВКЛЮЧЕНО».

Войти в Личный кабинет Подробнее о тарифах

БУДСТАНДАРТ Online