РTM 26-02-39-84 Методы защиты от коррозии и выбор материалов для основного оборудования и трубопроводов установок подготовки и первичной переработки нефти (ЭЛОУ, АВТ, АТ, ЭЛОУ-АВТ)
ВСЕСОЮЗНЫЙ НАУЧНО-ИССЛЕДОВАТЕЛЬСКИЙ И
ПРОЕКТНО-КОНСТРУКТОРСКИЙ ИНСТИТУТ НЕФТЯНОГО МАШИНОСТРОЕНИЯ
ВНИИНЕФТЕМАШ
РУКОВОДЯЩИЙ ТЕХНИЧЕСКИЙ МАТЕРИАЛ
МЕТОДЫ ЗАЩИТЫ ОТ
КОРРОЗИИ И ВЫБОР МАТЕРИАЛОВ
ДЛЯ ОСНОВНЫХ ЭЛЕМЕНТОВ И УЗЛОВ АППАРАТОВ
УСТАНОВОК ПОДГОТОВКИ И ПЕРВИЧНОЙ ПЕРЕРАБОТКИ
НЕФТИ (ЭЛОУ, АВТ, AT, ЭЛОУ-АВТ)
РTM 26-02-39-84
РАЗРАБОТАНО ВСЕСОЮЗНЫМ НАУЧНО-ИССЛЕДОВАТЕЛЬСКИМ И ПРОЕКТНО-КОНСТРУКТОРСКИМ ИНСТИТУТОМ НЕФТЯНОГО МАШИНОСТРОЕНИЯ "ВНИИНЕФТЕМАШ".
Зам. директора института |
В.Г. Дьяков |
Зав. отделом № 31 |
Б.Ф. Шибряев |
Зав. лабораторией 31Л1 |
М.К. Старостина |
С.н.сотр. отдела № 31 |
Г.А. Юшманова |
С.н.сотр. отдела № 31 |
А.В. Шрейдер |
Зав. отделом № 41 |
А.М. Бубакин |
Согласовано:
Зав. отделом № 30 |
Ю.С. Медведев |
Зав. отделом № 32 |
В.З. Вашин |
Зав. отделом № 33 |
Д.А. Яковлев |
"СОГЛАСОВАНО" Зам. начальника ВПО "СОЮЗНЕФТЕОРГСИНТЕЗ" П. Смирнов |
"УТВЕРЖДАЮ" Главный инженер ВПО "СОЮЗНЕФТЕХИММАШ" М.С. Скудицкий |
РУКОВОДЯЩИЙ ТЕХНИЧЕСКИЙ МАТЕРИАЛ
Методы защиты
от коррозии и выбор материалов для основного оборудования |
РТМ 26-02-39-84 взамен РТМ 26-02-39-77 Срок введения с 01.01.85 г. |
Настоящий РТМ распространяется на печи, электродегидраторы, колонное, емкостное, теплообменное и конденсационно-холодильное оборудование, трубопроводы, арматуру, насосы, предназначенные для установок подготовки и первичной переработки нефти. РТМ служит для выбора материального оформления вновь проектируемого оборудования или замены эксплуатируемого оборудования по мере его износа с соблюдением необходимых мероприятий по защите от коррозии.
Материальное оформление оборудования, выбранное в соответствии с настоящим РТМ, не требует дополнительного согласования и обоснования. Отклонения от РТМ должны согласовываться с ВНИИНЕФТЕМАШем.
1. Коррозионные агенты и вызываемые ими разрушения оборудования установок ЭЛОУ, АВТ, AT, ЭЛОУ-АВТ.
1.1. В технологических средах установок подготовки и первичной переработки нефти важнейшими коррозионными агентами являются хлористые соли (хлориды кальция и магния), находящиеся в сопутствующей нефти пластовой воде, Н2S и HCl. Образование HCl происходит в результате гидролиза хлоридов магния и кальция при температурах от 120 до 350 °С соответственно, а также при термическом разложении хлорорганических соединений нефти, происходящем наиболее интенсивно в интервале от 250 до 380 °С.
Глубокое обессоливание нефти снижает коррозию и увеличивает сроки бесперебойной работы оборудования АВТ, AT. Однако и при содержании в обессоленной нефти солей (гидролизующихся хлоридов) до 5 мг/л может не наблюдаться резкого снижения образования НСl в технологических средах. Причиной этого является образование НСl в результате термической диссоциации хлорорганических соединений, содержащихся в сырой нефти. Количество НСl, образующегося из хлорорганики, может на порядок и более превышать количество НСl, образующееся при распаде гидролизующихся хлоридов и достигать значительных величин. Содержание хлорорганических соединений в нефти может составлять до 100 мг/л в пересчете на хлор-ионы. Поэтому глубокое обессоливание нефти неэффективно без дополнительных мероприятий по предотвращению образования НСl, выделяющегося при расщеплении хлорорганических соединений нефти.
Заметное выделение Н2S в результате термического распада сернистых соединений начинается при температурах выше 200 °С. Общее содержание серы в нефти не характеризует непосредственно агрессивность технологических сред. Количество Н2S, выделившегося при переработке нефти, не всегда пропорционально общему содержанию серы в сырье, а определяется относительным содержанием различных сероорганических соединений и характеристиками их термостабильности. Ниже приводятся данные о выделении Н2S (мг/л) при нагревании нефтей с различным содержанием общей серы при температуре 350 °С:
покровской угленосной свиты (S общая - 1,15%) - 7000,
покровской башкирского яруса (S общая - 0,50%) - 9500,
дмитровской (S общая - 1,05%) - 160,
михайловской (S общая - 0,61%) - 165,
ишимбаевской (S общая - 3,80%) - 180,
тархановской угленосной свиты (S общая - 3,10%) - 1000.
Содержание Н2S и НСl в технологических средах при переработке определенного типа нефти возрастает по мере нагревания продукта.
1.2. Агрессивность технологических сред определяется присутствием и других коррозионных агентов, находящихся в нефти или образующихся в процессе ее переработки: кислорода, углекислого газа, элементарной серы, окислов серы, политионовых кислот, следов серной кислоты, нафтеновых кислот, окислов ванадия, а также введенными в избытке нейтрализующимися реагентами (NаОН, Na2CO3,NH3). Вызываемые ими формы коррозионных разрушений могут быть различными: общая или язвенная коррозия, питтинг, коррозионное растрескивание (КР), избирательная коррозия, коррозия под осадком, газовая коррозия, коррозионная эрозия, щелевая коррозия и др.
1.3. Изучение механизма коррозионных процессов, приводящих к специфическим разрушениям оборудования, позволило выделить основные виды коррозии металлов, имеющие место при первичной переработке нефти.
1.3.1. Хлористоводородно-сероводородная коррозия обуславливается совместным воздействием на металл НCl и Н2S, растворенных в жидкофазной водной среде (конденсированной влаге). Электрохимической низкотемпературной коррозии под действием указанных агентов подвержено: конденсационно-холодильное оборудование, верхние днища и примыкающий к ним корпус эвапорационной и атмосферной колонн, если температура в указанных зонах ниже "точки росы", а также дренажные трубопроводы емкостей орошения эвапоратора и атмосферной колонны. Уменьшение хлористоводородной коррозии достигается использованием процессов аминирования и защелачивания нефти.
Интенсивной коррозии подвергается оборудование во время остановок на ремонт и в пусковой период (при неизбежных и временных изменениях режимных технологических параметров). Объясняется это тем, что в системе конденсируются слабые растворы HCl, коррозионная агрессивность которых усиливается в результате поглощения Н2S из паровой фазы, а химико-технологические мероприятия в данный период отсутствуют.
Скорость коррозии углеродистой стали сильно увеличивается даже при небольших содержаниях НCl и Н2S в водной фазе и может превышать 8 мм/ год при насыщении водной фазы Н2S и концентрации НСl ~ 0,02%.
1.3.2. Сероводородному коррозионному растрескиванию (далее СКР) подвергается оборудование из углеродистых и низколегированных сталей при наличии в металле растягивающих (в т.ч. остаточных) напряжений в средах, содержащих влагу и Н2S, парциальное давление которого в газовой фазе выше 0,0002 МПа. Растягивающие напряжения могут быть вызваны рабочими нагрузками, особенностями сварки, деформацией при изготовлении аппарата. При указанном парциальном давлении Н2S наводороживание может стать настолько значительным, что сообщает стали ощутимую для прочности хрупкость. В растворах типа дренажных вод в аппаратах в отсутствии Н2S проникновение водорода в сталь возможно только при рН менее 4. В сероводородных растворах диффузия водорода в углеродистую сталь происходит в интервале значений рН от 1,5 до 11,5. СКР подвержены стали с относительно высоким значением предела прочности (или с большими внутренними напряжениями); мягкие ненапряженные стали в подобных условиях подвергаются расслоению с образованием пузырей (отдулин).
На практике наблюдалось СКР металла сварных соединений емкостей орошения, трубопроводов линий острого орошения атмосферных колонн при переработке ставропольской и покровской нефтей. Значение рН среды при этом отмечалось ниже 5. В указанных условиях металл незащищенной поверхности емкости орошения атмосферной колонны подвергался расслоению, которое сопровождалось образованием отдулин.
1.3.3. Высокотемпературной сероводородной газовой коррозии обычно подвержены змеевики печей, трансферные линии трубопроводов, корпуса колонн, работающих при температуре выше 260 °С. Металл при этом подвергается обезуглероживанию, что приводит к образованию на поверхности широких язв. Легирование хромом повышает стойкость стали к этому виду поражения. При температуре среды ниже 260 °С коррозия практически не протекает, независимо от содержания в среде Н2S.
1.3.4. Высокотемпературное окисление выражается в виде окалинообразования на печном оборудовании под действием обогревающих газов, содержащих избыток воздуха. Оно усиливается при сжигании сернистого топлива и появления в результате этого сернистого ангидрида в топочной атмосфере. Окалиностойкость металла, применяемого для печных устройств, повышается легированием хромом.
1.3.5. Основной причиной выхода из строя печного оборудования при использовании в качестве топлива мазута является коррозия металла, вызванная зольными отложениями, образующимися при сжигании мазута. Соединения серы, ванадия, натрия, хлора, находящиеся в зольных отложениях, приводят к образованию легкоплавких соединений - эвтектик - и тогда возможна ускоренная коррозия в расплаве.
Для ванадийсодержащих зол ускоренная коррозия жаростойких сталей наблюдается при температуре выше 650 °С.
Зольность мазута зависит также от организации процесса защелачивания обессоленной нефти. Избыток содо-щелочного раствора в нефти или нарушение соотношения щелочных реагентов, связанное, например, с увеличением расхода соды, повышает зольность мазута и способствует коррозии под действием топочных газов, прогару, образованию отдулин печных змеевиков.
При рабочей температуре до 550 ° и применении легированных сталей продукты сгорания всех видов топлив практически неагрессивны.
1.3.6. В период останова печей трубы печного змеевика могут подвергаться электрохимической низкотемпературной коррозии. Коррозионные процессы протекают на поверхности нагрева и приводят к образованию сквозных отверстий. Разрушение металла происходит под действием серной и сернистой кислот, образованию которых способствует присутствие влаги и повышенное содержание SO2 и SO3в дымовых газах.
1.3.7. Щелочному коррозионному растрескиванию подвергаются углеродистые и низколегированные стали при концентрации щелочи (NаОН) в водной фазе выше 10% и температуре выше 50 °С. Этот вид коррозионно-механического разрушения стали становится возможным при наличии в аппаратах застойных зон, в которых происходит повышение концентрации NаОН вследствие упаривания и при наличии в металле растягивающих напряжений. Так, щелочному коррозионному растрескиванию подвергался металл корпусов теплообмеников, преимущественно в зоне сварных соединений, где средой межтрубного пространства был продукт, содержащий свободную щелочь (обессоленная нефть, мазут). Наиболее часто встречается КР участка трубопровода вблизи места ввода щелочного раствора в обессоленную нефть, если раствор NаОН не вводится на расстоянии от стенки трубопровода (т.е. не в середину потока нефти).
1.3.8. Электрохимической коррозии, имеющей общий или язвенный характер, подвержены: незащищенный металл электродегидраторов, емкостей орошения, а также трубные пучки теплообменников нагрева нефти до электродегидраторов.
Усилению коррозии трубных пучков способствует подача перед теплообменниками промывочной воды, раствора деэмульгатора или содощелочного раствора, особенно при скорости движения нефти по трубному пучку ниже 1,5 м/с. Это вызывает отложение солей на внутренней поверхности теплообменных труб и приводит к коррозии под осадком. Образование отложений сопровождается ухудшением теплопередачи и повышением температуры стенки пучка и в связи с этим усилением коррозии под осадком. Результаты промышленного эксперимента показали, что появление осадка толщиной до 2,0 мм увеличивает рабочую температуру металла труб приблизительно на 50 °С.
1.3.9. Трубные пучки конденсаторов-холодильников подвергаются воздействию двух различных химических сред: бензиновых погонов и оборотной воды. Особенно опасна коррозия со стороны загрязненной оборотной воды и обрастание труб, ухудшающее теплопередачу. Агрессивность оборотной воды зависит от содержания в ней кислорода, сероводорода, хлористых солей, карбонатов, присутствия микроорганизмов, а также значения РН, скорости движения потока. Наиболее опасно для углеродистой стали присутствие в виде Н2S, появлению которого способствуют анаэробные серные бактерии, восстанавливающие сульфаты с образованием Н2S. При содержании в воде хлористых солей до 100 мг/л не возникает серьезных коррозионных разрушений углеродистой стали. Оборотная вода становится агрессивной при содержании солей более 1000 мг/л. Увеличение скорости коррозию углеродистой стали наблюдается при скорости движения потока ниже 1 м/с.
Со стороны бензиновой фракции трубные пучки подвергаются общей, язвенной коррозии или коррозии под осадком, состоящим преимущественно из NН4Cl. Скорость коррозии в этой среде зависит от значения рН. Значительное усиление скорости коррозии углеродистой стали (до 1,0 и более мм/год наблюдается при рН ниже 7.)
Латунные трубки конденсаторов подвергаются коррозионному растрескиванию при избыточном введении в систему аммиачного раствора. Разрушение латуни отмечается при рН среды более 8,0 при переработке малосернистых нефтей и при рН более 9,0 при переработке сернистых и высокосернистых нефтей.
1.3.10. Для монель-металла, используемого в качестве плакирующего слоя, основного материала и материала верхних тарелок атмосферной и эвапорационной колонн, представляет опасность избирательная коррозия в условиях конденсации влаги и присутствия НСl, Н2S. Продукты коррозии легко отслаиваются. Эта коррозия может возникнуть при переработке высокосернистых нефтей, содержащих термически нестабильные серорганические соединения, а также при недостаточной эффективности мероприятий по подавлению хлористоводородной коррозии, например, при использовании только раствора соды для защелачивания обессоленной нефти, содержащей помимо минеральных солей еще и хлорорганические соединения. Для монель-металла вредно также введение в колонну аммиачного раствора концентрацией выше 2%.
1.4. Агрессивность технологических сред снижается использованием химико-технологических мероприятий по предотвращению и снижению коррозии.
Полная версия документа доступна в тарифе «ВСЕ ВКЛЮЧЕНО».