ДСТУ IEC 60076-10-1:2016 Трансформаторы силовые. Часть 10-1. Определение уровня шума. Руководство по применению (IEC 60076-10-1:2016, IDT)
ПІДТВЕРДЖУВАЛЬНЕ ПОВІДОМЛЕННЯ
Державне підприємство
«Український науково-дослідний і навчальний центр проблем стандартизації,
сертифікації та якості» (
(ДП «УкрНДНЦ»))
Наказ від 22.08.2016 № 244
ІЕС 60076-10-1:2016
Power transformers — Part 10-1: Determination of sound levels — Application guide
прийнято як
національний стандарт методом «підтвердження» за позначенням
ДСТУ ІЕС 60076-10-1:2016 (ІЕС 60076-10-1:2016, IDT)
Трансформатори силові. Частина 10-1. Визначення рівня шуму. Настанова щодо застосування
З наданням чинності від 2016-09-01
Contents
Foreword
1 Scope
2 Normative references
3 Basic physics of sound
3.1 Phenomenon
3.2 Sound pressure, p
3.3 Particle velocity, u
3.4 Sound intensity, Ī
3.5 Sound power, W
3.6 Sound fields
3.6.1 General
3.6.2 The free field
3.6.3 The diffuse field
3.6.4 The near-field
3.6.5 The far-field
3.6.6 Standing waves
4 Sources and characteristics of transformer and reactor sound
4.1 General
4.2 Sound sources
4.2.1 Core
4.2.2 Windings
4.2.3 Stray flux control elements
4.2.4 Sound sources in reactors
4.2.5 Effect of current harmonics in transformer and reactor windings
4.2.6 Fan noise
4.2.7 Pump noise
4.2.8 Relative importance of sound sources
4.3 Vibration transmission
4.4 Sound radiation
4.5 Sound field characteristics
5 Measurement principles
5.1 General
5.2 A-weighting
5.3 Sound measurement methods
5.3.1 General
5.3.2 Sound pressure method
5.3.3 Sound intensity method
5.3.4 Selection of appropriate sound measurement method
5.4 Information on frequency bands
5.5 Information on measurement surface
5.6 Information on measurement distance
5.7 Information on measuring procedures (walk-around and point-by-point)
6 Practical aspects of making sound measurements
6.1 General
6.2 Orientation of the test object to avoid the effect of standing waves
6.3 Device handling for good acoustical practice
6.4 Choice of microphone spacer for the sound intensity method
6.5 Measurements with tank mounted sound panels providing incomplete coverage
6.6 Testing of reactors
7 Difference between factory tests and field sound level measurements
7.1 General
7.2 Operating voltage
7.3 Load current
7.4 Load power factor and power flow direction
7.5 Operating temperature
7.6 Harmonics in the load current and in voltage
7.7 DC magnetization
7.8 Effect of remanent flux
7.9 Sound level build-up due to reflections
7.10 Converter transformers with saturable reactors (transductors)
Annex A (informative) Sound level built up due to harmonic currents in windings
A.1 Theoretical derivation of winding forces due to harmonic currents
A.2 Force components for a typical current spectrum caused by a B6 bridge
A.3 Estimation of sound level increase due to harmonic currents by calculation
Bibliography
Figure 1 - Simulation of the spatially averaged sound intensity level (solid lines) and sound pressure level (dashed lines) versus measurement distance d in the near-field
Figure 2 - Example curves showing relative change in lamination length for one type of electrical core steel during complete cycles of applied 50 Hz a.c. induction up to peak flux densities Bmax in the range of 1,2 T to 1,9 T
Figure 3 - Induction (smooth line) and relative change in lamination length (dotted line) as a function of time due to applied 50 Hz a.c. induction at 1,8 T - no d.c. bias
Figure 4 - Example curve showing relative change in lamination length during one complete cycle of applied 50 Hz a.c. induction at 1,8 T with a small d.c. bias of 0,1 T
Figure 5 - Induction (smooth line) and relative change in lamination length (dotted line) as a function of time due to applied 50 Hz a.c. induction at 1,8 T with a small d.c. bias of 0,1 T
Figure 6 - Sound level increase due to d.c. current in windings
Figure 7 - Typical sound spectrum due to load current
Figure 8 - Simulation of a sound pressure field (coloured) of a 31,5 MVA transformer at 100 Hz with corresponding sound intensity vectors along the measurement path
Figure 9 - A-weighting graph derived from function A(f)
Figure 10 - Distribution of disturbances to sound pressure in the test environment
Figure 11 - Microphone arrangement
Figure 12 - Illustration of background sound passing through test area and sound radiated from the test object
Figure 13-1/1- and 1/3-octave bands with transformer tones for 50 Hz and 60 Hz Systems
Figure 14 - Logging measurement demonstrating spatial variation along the measurement path
Figure 15 - Test environment
Figure A.1 - Current wave shape for a star and a delta connected winding for the current spectrum given in Table A.2
Table 1 - A-weighting values for the first fifteen transformer tones
Table A.1 - Force components of windings due to harmonic currents
Table A.2 - Current spectrum of a B6 converter bridge
Table A.3 - Calculation of force components and test currents
Table A.4 - Summary of harmonic forces and test currents
Полная версия документа доступна в тарифе «ВСЕ ВКЛЮЧЕНО».