ДСТУ IEC 60076-10-1:2016 Трансформаторы силовые. Часть 10-1. Определение уровня шума. Руководство по применению (IEC 60076-10-1:2016, IDT)

Данный документ доступнен в тарифе «ВСЕ ВКЛЮЧЕНО»

У Вас есть вопросы по документу? Мы рады на них ответить!Перечень бесплатных документовОбнаружили ошибку в документе или на сайте? Пожалуйста, напишите нам об этом!Оставить заявку на документ

ПІДТВЕРДЖУВАЛЬНЕ ПОВІДОМЛЕННЯ

Державне підприємство «Український науково-дослідний і навчальний центр проблем стандартизації, сертифікації та якості» (   
(ДП «УкрНДНЦ»))

Наказ від 22.08.2016 № 244

ІЕС 60076-10-1:2016

Power transformers — Part 10-1:  Determination of sound levels — Application guide

прийнято як національний стандарт методом «підтвердження» за позначенням
 

ДСТУ ІЕС 60076-10-1:2016 (ІЕС 60076-10-1:2016, IDT)

Трансформатори силові. Частина 10-1. Визначення рівня шуму. Настанова щодо застосування

З наданням чинності від 2016-09-01

Contents

Foreword

1 Scope

2 Normative references

3  Basic physics of sound

3.1  Phenomenon

3.2  Sound pressure, p

3.3  Particle velocity, u

3.4  Sound intensity,  Ī

3.5  Sound power, W

3.6  Sound fields

3.6.1  General

3.6.2  The free field

3.6.3  The diffuse field

3.6.4  The near-field

3.6.5  The far-field

3.6.6  Standing waves

4  Sources and characteristics of transformer and reactor sound

4.1  General

4.2  Sound sources

4.2.1  Core

4.2.2  Windings

4.2.3  Stray flux control elements

4.2.4  Sound sources in reactors

4.2.5  Effect of current harmonics in transformer and reactor windings

4.2.6  Fan noise

4.2.7  Pump noise

4.2.8  Relative importance of sound sources

4.3  Vibration transmission

4.4  Sound radiation

4.5  Sound field characteristics

5  Measurement principles

5.1  General

5.2  A-weighting

5.3  Sound measurement methods

5.3.1  General

5.3.2  Sound pressure method

5.3.3  Sound intensity method

5.3.4  Selection of appropriate sound measurement method

5.4  Information on frequency bands

5.5  Information on measurement surface

5.6  Information on measurement distance

5.7  Information on measuring procedures (walk-around and point-by-point)

6  Practical aspects of making sound measurements

6.1  General

6.2  Orientation of the test object to avoid the effect of standing waves

6.3  Device handling for good acoustical practice

6.4  Choice of microphone spacer for the sound intensity method

6.5  Measurements with tank mounted sound panels providing incomplete coverage

6.6  Testing of reactors

7  Difference between factory tests and field sound level measurements

7.1  General

7.2  Operating voltage

7.3  Load current

7.4  Load power factor and power flow direction

7.5  Operating temperature

7.6  Harmonics in the  load current and  in voltage

7.7  DC magnetization

7.8  Effect of remanent flux

7.9  Sound level build-up due to reflections

7.10  Converter transformers with saturable reactors (transductors)

Annex A (informative)  Sound level built up due to harmonic currents in windings

A.1  Theoretical derivation of winding forces due to harmonic currents

A.2  Force components for a typical current spectrum caused by a B6 bridge

A.3  Estimation of sound level increase due to harmonic currents by calculation

Bibliography

Figure  1  -  Simulation of the spatially averaged sound intensity level  (solid lines) and sound pressure level (dashed lines) versus measurement distance d in the near-field

Figure 2 -  Example curves showing  relative change in lamination length for one type of electrical core steel during complete cycles of applied 50 Hz a.c.  induction  up to peak flux densities Bmax in the range of 1,2 T to  1,9 T

Figure 3 -  Induction  (smooth line) and relative change in lamination length  (dotted line) as a function of time due to applied 50  Hz a.c.  induction at  1,8 T -  no d.c.  bias

Figure 4 -  Example curve showing relative change in lamination length  during one complete cycle of applied 50 Hz a.c.  induction at  1,8 T  with a small d.c.  bias of 0,1  T

Figure 5 -  Induction  (smooth line) and relative change in lamination length  (dotted line) as a function of time due to applied 50  Hz a.c.  induction at  1,8 T  with a small d.c.  bias of 0,1  T

Figure 6 -  Sound level increase due to d.c. current in windings

Figure 7 -  Typical sound spectrum due to load current

Figure 8 -  Simulation of a sound pressure field (coloured) of a 31,5 MVA transformer at  100 Hz with corresponding sound intensity vectors along the measurement path

Figure 9 -  A-weighting graph derived from function A(f)

Figure  10 -  Distribution of disturbances to sound pressure in the test environment

Figure  11  -  Microphone arrangement

Figure  12 -  Illustration of background sound passing through test area and sound radiated from the test object

Figure  13-1/1- and  1/3-octave bands with transformer tones  for 50 Hz and 60 Hz Systems

Figure  14 -  Logging measurement demonstrating spatial variation  along the measurement path

Figure  15 -  Test environment

Figure A.1  -  Current wave shape for a star and a delta connected winding for the current spectrum given in Table A.2

Table  1  -  A-weighting values for the first fifteen transformer tones

Table A.1  -  Force components of windings due to harmonic currents

Table A.2 -  Current spectrum of a B6 converter bridge

Table A.3 -  Calculation of force components and test currents

Table A.4 -  Summary of harmonic forces and test currents

 

Полная версия документа доступна в тарифе «ВСЕ ВКЛЮЧЕНО».

Войти в Личный кабинет Подробнее о тарифах

БУДСТАНДАРТ Online