ДСТУ CLC/TS 61643-12:2015 Устройства защиты от импульсных перенапряжений низковольтные. Часть 12. Устройства защиты от импульсных перенапряжений, подключенные к низковольтным распределительным системам. Принц...
ПІДТВЕРДЖУВАЛЬНЕ ПОВІДОМЛЕННЯ
Державне підприємство
«Український науково-дослідний і навчальний центр проблем стандартизації,
сертифікації та
якості»
(
(ДП «УкрНДНЦ»))
Наказ від 22.06.2015 № 61
CLC/TS 61643-12:2009
Low-voltage surge protective devices -
Part 12: Surge protective devices connected to low-voltage power distribution
systems -
Selection and application principles
прийнято як національний стандарт
методом «підтвердження» за позначенням
ДСТУ CLC/TS 61643-12:2015
(CLC/TS 61643-12:2009, IDT)
Пристрої захисту від імпульсних перенапруг низьковольтні. Частина 12.
Пристрої захисту від імпульсних перенапруг, підключені до низьковольтних
розподільчих систем. Принципи вибору та застосування
З наданням чинності від 2016-01-01
Contents
0 Introduction
0.1 General
0.2 Keys to understanding the structure of this Technical Specification
1 Scope
2 Normative references
3 Terms, definitions and abbreviated terms
3.1 Terms and definitions
3.2 List of variables and abbreviations used in this Technical Specification
4 Systems and equipment to be protected
4.1 Low-voltage power distribution systems
4.2 Characteristics of the equipment to be protected
5 Surge protective devices
5.1 Basic functions of SPDs
5.2 Additional requirements
5.3 Classification of SPDs
5.4 Characteristics of SPDs
5.5 Additional information on characteristics of SPDs
6 Application of SPDs in low-voltage power distribution systems
6.1 Installation and its effect on the protection given by SPDs
6.2 Selection of SPD
6.3 Characteristics of auxiliary devices
7 Risk analysis
8 Co-ordination where equipment has both signalling and power terminals
Annex A (informative) Examples of various SPD technologies
A.1 Examples of internal circuits for one port and two port SPDs
A.2 Response of SPDs to a combination wave impulse
Annex B (informative) Explanation of testing procedures used in EN 61643-11
B.1 Determination of U res for SPDs tested in accordance with class I and class II tests
B.2 Impulse waveshape for assessment of U res
B.3 Influence of a back filter on determination of U res
B.4 Operating duty test for SPDs
B.5 TOV failure test
B.6 Differences in the testing conditions of Type 1 (test class I), 2 (test class II) and 3 (tests class III) SPDs
B.7 Short-circuit withstand capability test in conjunction with overcurrent protection (if any)
Annex C (informative) Partial lightning current calculations
Annex D (informative) Examples of application of CLC/TS 61643-12
D.1 Domestic application
D.2 Industrial application
D.3 Presence of a lightning protection system
Annex E (informative) Examples of application of the risk analysis
Annex F (informative) Consideration for SPDs when Type 1 SPDs are to be applied
Annex G (informative) Immunity versus insulation withstand
Annex H (informative) Examples of SPD installation in power distribution boards in some countries
Annex I (informative) Short circuit backup protection and surge withstand
I.1 Introduction
I.2 Information single shot 8/20 and 10/350 fuses withstand
I.3 Fuse influencing factors (reduction) for preconditioning and operating duty test
I.4 Specific examples with estimated range of factors for reduction of single shot fuse withstand
Annex J (informative) SPD coordination test principles
J.1 Introduction
J.2 Coordination criteria
J.3 Coordination techniques
J.4 Coordination test
Annex K (informative) Simple calculation of I imp for a Type 1 SPD in case of a building protected by a LPS
Bibliography
Figures
Figure 1 – Examples of components and combinations of components
Figure 2 – Relationship between U p , U 0 , U c and U cs
Figure 3 – Typical curve of U res versus I for ZnO varistors
Figure 4 – Typical curve for a spark gap
Figure 5 – Flowchart for SPD application
Figure 6 – Connection Type 1
Figure 7 – Connection Type 2
Figure 8 – Influence of SPD connecting lead lengths
Figure 9 – Need for additional protection
Figure 10 – Flowchart for the selection of an SPD
Figure 11 – Typical use of two SPDs – Electrical drawing
Figure A.1 – Examples of one-port SPDs
Figure A.2 – Examples of two-port SPDs
Figure A.3 – Response of one-port and two-port SPDs to a combination wave impulse
Figure B.1 – Test setting
Figure C.1 – Simple calculation of the sum of partial lightning currents into the power distribution system
Figure D.1 – Domestic installation
Figure D.2 – Industrial installation
Figure D.3 – Industrial installation circuitry
Figure D.4 – Example for a lightning protection system
Figure E.1 – HV and LV overhead lines
Figure E.2 – HV overhead line and buried LV lines
Figure E.3 – HV and LV buried lines
Figure E.4 – HV line overhead
Figure F.1 – General distribution of lightning current
Figure H.1 – Wiring diagram of an SPD connected on the load side of the main incoming isolator via a separate isolator (which could be included in SPD enclosure)
Figure H.2 – SPD connected to the nearest available outgoing way (MCB) to the incoming supply (TNS installation typically seen in the UK)
Figure H.3 – Single line-wiring diagram of an SPD connected in shunt on the first outgoing way of the distribution panel via a fuse (or MCB)
Figure J.1 – SPDs arrangement for the coordination test
Tables
Table 1 – Maximum TOV values as given in IEC 60364-4-44
Table 2 – Preferred values of I imp
Table 3 – Possible modes of protection for various LV systems
Table 4 – Minimum required U c of the SPD dependent on supply system configuration
Table 5 – Typical TOV test values
Table I.1 – Examples of ratio between single shot withstand and full preconditioning/operating duty test
Table J.1 – Test procedure for coordination
Table K.1 – Determination of the value of I imp on the AC side of PV generators
Полная версия документа доступна в тарифе «ВСЕ ВКЛЮЧЕНО».