ДСТУ EN 60099-4:2016 Розрядники. Частина 4. Металоксидні розрядники без іскрових проміжків для захисту від перенапруг систем змінного струму (EN 60099-4:2014, IDT)
ПІДТВЕРДЖУВАЛЬНЕ ПОВІДОМЛЕННЯ
Державне підприємство
«Український науково-дослідний і навчальний центр
проблем стандартизації,
сертифікації та якості»
(
(ДП «УкрНДНЦ»))
Наказ від 22.08.2016 № 244
EN 60099-4:2014
Surge arresters — Part 4: Metal-oxide surge arresters without gaps for a.c. systems
прийнято як
національний стандарт
методом «підтвердження» за позначенням
ДCТУ EN 60099-4:2016 (EN 60099-4:2014, IDТ)
Розрядники. Частина 4. Металоксидні розрядники без іскрових проміжків для захисту від перенапруг систем змінного струму
З наданням чинності від 2016-09-01
CONTENTS
Introduction
1 Scope
2 Normative references
3 Terms and definitions
4 Identification and classification
4.1 Arrester identification
4.2 Arrester classification
5 Standard ratings and service conditions
5.1 Standard rated voltages
5.2 Standard rated frequencies
5.3 Standard nominal discharge currents
5.4 Service conditions
5.4.1 Normal service conditions
5.4.2 Abnormal service conditions
6 Requirements
6.1 Insulation withstand
6.2 Reference voltage
6.3 Residual voltages
6.4 Internal partial discharges
6.5 Seal leak rate
6.6 Current distribution in a multi-column arrester
6.7 Thermal stability
6.8 Long term stability under continuous operating voltage
6.9 Heat dissipation behaviour of test sample
6.10 Repetitive charge transfer withstand
6.11 Operating duty
6.12 Power-frequency voltage versus time characteristics of an arrester
6.13 Short-circuit performance
6.14 Disconnector
6.14.1 Disconnector withstand
6.14.2 Disconnector operation
6.15 Requirements on internal grading components
6.16 Mechanical loads
6.16.1 General
6.16.2 Bending moment
6.16.3 Resistance against environmental stresses
6.16.4 Insulating base and mounting bracket
6.16.5 Mean value of breaking load (MBL).
6.16.6 Electromagnetic compatibility .
6.17 End of life
6.18 Lightning impulse discharge capability
7 General testing procedure
7.1 Measuring equipment and accuracy
7.2 Reference voltage measurements
7.3 Test samples
7.3.1 General
7.3.2 Arrester section requirements
8 Type tests (design tests)
8.1 General
8.2 Insulation withstand tests
8.2.1 General
8.2.2 Tests on individual unit housings
8.2.3 Tests on complete arrester assemblies
8.2.4 Ambient air conditions during tests
8.2.5 Wet test procedure
8.2.6 Lightning impulse voltage test
8.2.7 Switching impulse voltage test
8.2.8 Power-frequency voltage test
8.3 Residual voltage tests
8.3.1 General
8.3.2 Steep current impulse residual voltage test
8.3.3 Lightning impulse residual voltage test
8.3.4 Switching impulse residual voltage test
8.4 Test to verify long term stability under continuous operating voltage
8.4.1 General
8.4.2 MO resistor elements stressed below Uref
8.4.3 Test procedure for MO resistor elements stressed at or above Uref
8.5 Test to verify the repetitive charge transfer rating, Qrs
8.5.1 General
8.5.2 Test procedure
8.5.3 Test evaluation
8.5.4 Rated values of repetitive charge transfer rating, Qrs
8.6 Heat dissipation behaviour of test sample
8.6.1 General
8.6.2 Arrester section requirements
8.6.3 Procedure to verify thermal equivalency between complete arrester and arrester section
8.7 Operating duty test
8.7.1 General
8.7.2 Test procedure
8.7.3 Rated thermal energy and charge values, Wth and Qth
8.8 Power-frequency voltage-versus-time test
8.8.1 General
8.8.2 Test samples
8.8.3 Initial measurements
8.8.4 Test procedure
8.8.5 Test evaluation
8.9 Tests of arrester disconnector
8.9.1 General
8.9.2 Operating withstand test
8.9.3 Disconnector operation
8.9.4 Mechanical tests
8.9.5 Temperature cycling and seal pumping test
8.10 Short-circuit tests
8.10.1 General
8.10.2 Preparation of the test samples
8.10.3 Mounting of the test sample
8.10.4 High-current short-circuit tests
8.10.5 Low-current short-circuit test
8.10.6 Evaluation of test results
8.11 Test of the bending moment
8.11.1 General
8.11.2 Overview
8.11.3 Sample preparation
8.11.4 Test procedure
8.11.5 Test evaluation
8.11.6 Test on insulating base and mounting bracket
8.12 Environmental tests
8.12.1 General
8.12.2 Sample preparation
8.12.3 Test procedure
8.12.4 Test evaluation
8.13 Seal leak rate test
8.13.1 General
8.13.2 Sample preparation
8.13.3 Test procedure
8.13.4 Test evaluation
8.14 Radio interference voltage (RIV) test
8.15 Test to verify the dielectric withstand of internal components
8.15.1 General
8.15.2 Test procedure
8.15.3 Test evaluation
8.16 Test of internal grading components
8.16.1 Test to verify long term stability under continuous operating voltage
8.16.2 Thermal cyclic test
9 Routine tests and acceptance tests
9.1 Routine tests
9.2 Acceptance tests
9.2.1 Standard acceptance tests
9.2.2 Special thermal stability test
10 Test requirements on polymer-housed surge arresters
10.1 Scope
10.2 Normative references
10.3 Terms and definitions
10.4 Identification and classification
10.5 Standard ratings and service conditions
10.6 Requirements
10.7 General testing procedure
10.8 Type tests (design tests)
10.8.1 General
10.8.2 Insulation withstand tests
10.8.3 Residual voltage tests
10.8.4 Test to verify long term stability under continuous operating voltage
10.8.5 Test to verify the repetitive charge transfer rating, Qrs
10.8.6 Heat dissipation behaviour of test sample
10.8.7 Operating duty tests
10.8.8 Power frequency voltage-versus-time test
10.8.9 Tests of arrester disconnector
10.8.10 Short-circuit tests
10.8.11 Test of the bending moment
10.8.12 Environmental tests
10.8.13 Seal leak rate test
10.8.14 Radio interference voltage (RIV) test
10.8.15 Test to verify the dielectric withstand of internal components
10.8.16 Test of internal grading components
10.8.17 Weather ageing test
10.9 Routine tests
11 Test requirements on gas-insulated metal enclosed arresters (GIS-arresters)
11.1 Scope
11.2 Normative references
11.3 Terms and definitions
11.4 Identification and classification
11.5 Standard ratings and service conditions
11.6 Requirements
11.6.1 Withstand voltages
11.7 General testing procedures
11.8 Type tests (design tests)
11.8.1 General
11.8.2 Insulation withstand tests
11.8.3 Residual voltage tests
11.8.4 Test to verify long term stability under continuous operating voltage
11.8.5 Test to verify the repetitive charge transfer rating, Qrs
11.8.6 Heat dissipation behaviour of test sample
11.8.7 Operating duty tests
11.8.8 Power frequency voltage-versus-time test
11.8.9 Tests of arrester disconnector
11.8.10 Short-circuit tests
11.8.11 Test of the bending moment
11.8.12 Environmental tests
11.8.13 Seal leak rate test
11.8.14 Radio interference voltage (RIV) test
11.8.15 Test to verify the dielectric withstand of internal components
11.8.16 Test of internal grading components
11.9 Routine tests
11.10 Test after erection on site
12 Separable and dead-front arresters
12.1 Scope
12.2 Normative references
12.3 Terms and definitions
12.4 Identification and classification
12.5 Standard ratings and service conditions
12.6 Requirements
12.7 General testing procedure
12.8 Type tests (design tests)
12.8.1 General
12.8.2 Insulation withstand tests
12.8.3 Residual voltage tests
12.8.4 Test to verify long term stability under continuous operating voltage
12.8.5 Test to verify the repetitive charge transfer rating, Qrs
12.8.6 Heat dissipation behaviour of test sample
12.8.7 Operating duty tests
12.8.8 Power-frequency voltage versus time test
12.8.9 Tests of disconnector
12.8.10 Short-circuit test
12.8.11 Test of the bending moment
12.8.12 Environmental tests
12.8.13 Seal leak rate test
12.8.14 Radio interference voltage (RIV) test
12.8.15 Test to verify the dielectric withstand of internal components
12.8.16 Test of internal grading components
12.8.17 Internal partial discharge test
12.9 Routine tests and acceptance tests
13 Liquid-immersed arresters
13.1 Scope
13.2 Normative references
13.3 Terms and definitions
13.4 Identification and classification
13.5 Standard ratings and service conditions
13.6 Requirements
13.7 General testing procedure
13.8 Type tests (design tests)
13.8.1 General
13.8.2 Insulation withstand tests
13.8.3 Residual voltage tests
13.8.4 Test to verify long term stability under continuous operating voltage
13.8.5 Test to verify the repetitive charge transfer rating, Qrs
13.8.6 Heat dissipation behaviour of test sample
13.8.7 Operating duty tests
13.8.8 Power frequency voltage-versus-time test
13.8.9 Tests of arrester disconnector
13.8.10 Short-circuit tests
13.8.11 Test of the bending moment
13.8.12 Environmental tests
13.8.13 Seal leak rate test
13.8.14 Radio interference voltage (RIV) test
13.8.15 Test to verify the dielectric withstand of internal components
13.8.16 Test of internal grading components
13.9 Routine tests and acceptance tests
Annex A (normative) Abnormal service conditions
Annex B (normative) Test to verify thermal equivalency between complete arrester and arrester section
Annex C (normative) Artificial pollution test with respect to the thermal stress on porcelain housed multi-unit metal-oxide surge arresters
C.1 Glossary
C.1.1 Measured quantities
C.1.2 Calculated quantities ..
C.2 General
C.3 Classification of site severity
C.4 Preliminary heating test: measurement of the thermal time constant τ and calculation of β
C.5 Verification of the need to perform the pollution tests
C.6 General requirements for the pollution test
C.6.1 Test sample
C.6.2 Testing plant
C.6.3 Measuring devices and measuring procedures
C.6.4 Test preparation
C.7 Test procedures
C.7.1 Slurry method
C.7.2 Salt fog method
C.8 Evaluation of test results
C.8.1 Calculation of Kie
C.8.2 Calculation of the expected temperature rise ∆Tz in service
C.8.3 Preparation for the operating duty test
C.9 Example
C.9.1 Preliminary heating test
C.9.2 Verification of the need to perform the pollution test
C.9.3 Salt fog tests
C.9.4 Calculation performed after five test cycles
C.9.5 Calculation performed after 10 test cycles
Annex D (informative) Typical information given with enquiries and tenders
D.1 Information given with enquiry
D.1.1 System data
D.1.2 Service conditions
D.1.3 Arrester duty
D.1.4 Characteristics of arrester
D.1.5 Additional equipment and fittings
D.1.6 Any special abnormal conditions
D.2 Information given with tender
Annex E (informative) Ageing test procedure – Arrhenius law – Problems with higher temperatures
Annex F (informative) Guide for the determination of the voltage distribution along metal-oxide surge arresters
F.1 General .
F.2 Modelling of the surge arrester
F.3 Modelling of the boundary conditions
F.4 Calculation procedure
F.4.1 Capacitive representation of the MO resistor column
F.4.2 Capacitive and resistive representation of the MO resistor column
F.4.3 Determination of Uct
F.5 Example calculations
F.5.1 Modelling of the arrester and the boundary conditions
F.5.2 Resistive effects of the metal-oxide MO resistors
F.5.3 Results and conclusions from electric field calculations
Annex G (normative) Mechanical considerations
G.1 Test of bending moment
G.2 Seismic test
G.3 Definition of mechanical loads
G.4 Definition of seal leak rate
G.5 Calculation of wind-bending-moment
G.6 Procedures of tests of bending moment for porcelain/cast resin and polymer-housed arresters
Annex H (normative) Test procedure to determine the lightning impulse discharge capability
H.1 General
H.2 Selection of test samples
H.3 Test procedure
H.4 Test parameters for the lightning impulse discharge capability test
H.5 Measurements during the lightning impulse discharge capability test
H.6 Rated lightning impulse discharge capability
H.7 List of rated energy values
H.8 List of rated charge values
Annex I (normative) Determination of the start temperature in tests including verification of thermal stability
Annex J (normative) Determination of the average temperature of a multi-unit high-voltage arrester
Annex K (informative) Example calculation of test parameters for the operating duty test (8.7) according to the requirements of 7.3
Annex L (informative) Comparison of the old energy classification system based on line discharge classes and the new classification system based on thermal energy ratings for operating duty tests and repetitive charge transfer ratings for repetitive single event energies
Bibliography
Figure 1 – Illustration of power losses versus time during long term stability test
Figure 2 – Test procedure to verify the repetitive charge transfer rating, Qrs
Figure 3 – Test procedure to verify the thermal energy rating, Wth, and the thermal charge transfer rating, Qth, respectively
Figure 4 – Test procedure to verify the power frequency versus time characteristic (TOV test)
Figure 5 – Examples of arrester units
Figure 6 – Examples of fuse wire locations for “Design A“ arresters
Figure 7 – Examples of fuse wire locations for “Design B“ arresters
Figure 8 – Short-circuit test setup for porcelain-housed arresters
Figure 9 – Short-circuit test setup for polymer-housed arresters
Figure 10 – Example of a test circuit for re-applying pre-failing circuit immediately before applying the short-circuit test current
Figure 11 – Thermomechanical test
Figure 12 – Example of the test arrangement for the thermomechanical test and direction of the cantilever load
Figure 13 – Water immersion
Figure 14 – Test set-up for insulation withstand test of unscreened separable arresters
Figure C.1 – Flow-chart showing the procedure for determining the preheating of a test sample
Figure F.1 – Typical three-phase arrester installation
Figure F.2 – Simplified multi-stage equivalent circuit of an arrester
Figure F.3 – Geometry of arrester model
Figure F.4 – Example of voltage-current characteristic of MO resistors at +20 °C in the leakage current region
Figure F.5 – Calculated voltage stress along the MO resistor column in case B
Figure G.1 – Bending moment – multi-unit surge arrester
Figure G.2 – Definition of mechanical loads
Figure G.3 – Surge arrester unit
Figure G.4 – Surge-arrester dimensions
Figure G.5 – Flow chart of bending moment test procedures
Figure J.1 – Determination of average temperature in case of arrester units of same rated voltages
Figure J.2 – Determination of average temperature in case of arrester units of different rated voltages
Figure L.1 – Specific energy in kJ per kV rating dependant on the ratio of switching impulse residual voltage (Ua) to the r.m.s. value of the rated voltage Ur of the arrester
Table 1 – Arrester classification
Table 2 – Preferred values of rated voltages
Table 3 – Arrester type tests
Table 4 – Requirements for high current impulses
Table 5 – Rated values of thermal charge transfer rating, Qth
Table 6 – Test requirements for porcelain housed arresters
Table 7 – Required currents for short-circuit tests
Table 8 – Test requirements for polymer-housed arresters
Table 9 – 10 kA and 20 kA three–phase GIS–arresters – Required withstand voltages
Table 10 – 2,5 kA and 5 kA three – phase – GIS arresters – Required withstand voltages
Table 11 – Insulation withstand test voltages for unscreened separable arresters
Table 12 – Insulation withstand test voltages for dead-front arresters or separable
arresters in a screened/shielded housing
Table 13 – Partial discharge test values for separable and dead-front arresters
Table C.1 – Mean external charge for different pollution severities
Table C.2 – Characteristic of the sample used for the pollution test
Table C.3 – Requirements for the device used for the measurement of the charge
Table C.4 – Requirements for the device used for the measurement of the temperature
Table C.5 – Calculated values of ∆Tz max for the selected example
Table C.6 – Results of the salt fog test for the selected example
Table C.7 – Calculated values of ∆Tz and of TOD after 5 cycles for the selected example
Table C.8 – Calculated values of ∆Tz and of TOD after 10 cycles for the selected example
Table E.1 – Minimum demonstrated lifetime prediction
Table E.2 – Relationship between test durations at 115 °C and equivalent time at upper limit of ambient temperature
Table F.1 – Results from example calculations
Table L.1 – Peak currents for switching impulse residual voltage test
Table L.2 – Parameters for the line discharge test on 20 000 A and 10 000 A arresters
Table L.3 – Comparison of the classification system according to IEC 60099-4:2009 (Ed.2.2) and to IEC 60099-4:2014 (Ed.3.0)
Повна версія документа доступна в тарифі «ВСЕ ВРАХОВАНО».